

AFRL-IF-RS-TR-2003-217

Final Technical Report
September 2003

A PUBLISH/SUBSCRIBE BASED ARCHITECTURE
OF AN ALERT SERVER TO SUPPORT
PRIORITIZED AND PERSISTENT ALERTS

University of Texas at Arlington

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-217 has been reviewed and is approved for publication.

APPROVED: /s/
 RAYMOND A. LIUZZI
 Project Engineer

 FOR THE DIRECTOR: /s/
 JAMES A. COLLINS, Acting Chief
 Information Technology Division
 Information Direcotrate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
SEPTEMBER 2003

3. REPORT TYPE AND DATES COVERED
Final Jun 01 – Jan 03

4. TITLE AND SUBTITLE
A PUBLISH/SUBSCRIBE BASED ARCHITECTURE OF AN ALERT SERVER
TO SUPPORT PRIORITIZED AND PERSISTENT ALERTS

6. AUTHOR(S)
S. Chakravarthy and N. Vontela

5. FUNDING NUMBERS
C - F30602-01-2-0543
PE - 62702F
PR - R427
TA - 00
WU - P9

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Texas at Arlington
416 Yates Street
PO Box 19015
Arlington Texas 76019-0015

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFRL/IFTB
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-217

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Raymond A. Liuzzi/IFTB/(315) 330-3577/ Raymond.Liuzzi@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This report discusses various architectures and implementation issues and discusses our approach for a
publish/subscribe based distributed alert server (SPAWAR application) whose requirements include: priority-based
delivery, persistence, recovery, time-to-live and various other features. The approach described in this report provides
a lightweight implementation that is general-purpose and can be used for a number of applications.
A new efficient sweeping algorithm is used to make sure alerts are delivered correctly and satisfy several requirements
such as priority, sending existing alerts to new subscribers, and regular expression based subscription. The approach
was motivated by a need to provide alert distribution capability based on various needs, such as multiple ways to
publish (using TAG, USER, and PROFILE), guaranteed delivery of alerts, asynchronous delivery and ack/receipt
distribution. This approach is compared with various alternatives. The sweeping algorithm for priority-based delivery is
described in detail.

15. NUMBER OF PAGES
28

14. SUBJECT TERMS
Data Knowledge Base, Software, Architecture, Alerting Mechanisms

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

1. INTRODUCTION 1

1.1. Alternative approaches .. 2
1.1.1. Client/Server Architecture with remote procedure calls 2
1.1.2. Client/Server Architecture with Object Request Broker 2
1.1.3. Client/Server Architecture with Message Oriented Middleware 3

1.2. Existing Messaging Systems ... 4
1.3. Motivation.. 4

2. ALERT SERVER OBJECTIVES 4

2.1. Alert Clients... 5
2.2. Alert Server.. 5

3. DESIGN OF ALERT SERVER 6

3.1. Alert ... 6
3.2. Acknowledgement ... 7
3.3. Receipt ... 7
3.4. Subscription/Registration... 8

4. ALERT SERVER ARCHITECTURE 8

4.1. Messaging Domains:.. 8
4.1.1. Point-to-Point Messaging Domain 8
4.1.2. Publish/Subscribe Messaging Domain 9

4.2. Message Consumption:.. 9
4.3. Message Delivery Mode .. 10

4.3.1. Logging and Retrieval of Alerts 10
4.4. Subscription and Unsubscription for alerts and acknowledgement....................... 11
4.5. Queuing and Distribution of Alerts ... 12

4.5.1. Queuing 12
4.5.2. Distribution 13
4.5.3. Sweeping Algorithm 13

5. MULTITHREADING THE SERVER 16

5.1. Synchronization Issues .. 16
5.2. Types of Locks... 18

5.2.1. Mutex 18
5.2.2. Read-write 18
5.2.3. Semaphore 18

6. CONCLUSIONS AND FUTURE WORK 20

7. REFERENCES 21

 i

List of Figures
Figure 1. Messaging in an enterprise application. ...1

Figure 2. Alert Server with alert producer and consumers. C1, C2, ... are clients that can
be both producer and consumers of alerts..5

Figure 3. Contents of a log file. LSN is the log sequence number, fp is the file position
and size is the size of the object...11

Figure 4. Hash tables that store the consumers that are registered with alert server for a
topic. All consumers registered for an alert are stored in ALT and those
registered for an acknowledgement are stored in ACK table. A, B, C are the
topics and C1, C2, C3… are the consumers. ...12

Figure 5. Priority queue data structure. Each alert is stored in its respective priority level
queue. A1, A2… are alerts with their Ids that are stored in this data structure. ..13

Figure 6. Sweeping algorithm that sweeps through the priority queue.15

Figure 7. Alert Server Architecture Overview...17

 ii

List of Tables
Table 1. Locks used for DIFFERENT DATASTRUCTURES ..19

 iii

A PUBLISH/SUBSCRIBE BASED ARCHITECTURE
OF AN ALERT SERVER TO SUPPORT PRIORITIZED AND

PERSISTENT ALERTS

ABSTRACT

This paper discusses various architectures and implementation issues and
discusses our approach for a publish/subscribe based distributed alert
server (a SPAWAR application) whose requirements include: priority-based
delivery, persistence, recovery, time-to-live and various other
features. The approach described in this paper provides a lightweight
implementation that is general-purpose and can be used for a number of
applications.
A new efficient sweeping algorithm is used to make sure alerts are
delivered correctly and satisfy several requirements such as priority,
sending existing alerts to new subscribers, and regular expression based
subscription. Our approach was motivated by a need to provide alert
distribution capability based on various needs, such as multiple ways to
publish (using TAG, USER, and PROFILE), guaranteed delivery of alerts,
asynchronous delivery and ack/receipt distribution. Our approach is
compared with various alternatives. The sweeping algorithm for priority-
based delivery is described in detail.

 iv

1. INTRODUCTION

Enterprise messaging products (or as they are sometimes called, Message
Oriented Middleware products or MOM) are becoming an essential component for
integrating intra-company operations. They allow separate business components to be
combined into a reliable, yet flexible, system. In addition to the traditional MOM
vendors, several database vendors and a number of Internet related companies also
provide enterprise-messaging products.

MOMs [4] have a number of applications. For example, components of an
enterprise application for an automobile manufacturer can use the Alert Server in
situations where:

• The inventory component can send a message to the factory component when the
inventory level for a product goes below a certain level, so the factory can make
more cars.

• The factory component can send a message to the parts components so that the
factory can assemble the parts it needs.

• The parts components in turn can send messages to their own inventory and order
components to update their inventories and order new parts from suppliers.

• Both the factory and parts components can send messages to the accounting
component to update their budget numbers.

• The business can publish updated catalog items to its sales force.

Figure 1. Using messaging for these tasks allow the different components to
interact with each other efficiently, without tying up network or other resources.
Manufacturing is only one example of how an enterprise can use messaging system and
it’s API. This can also be used in financial services applications; health services
applications and many more applications. Thus the basic aim in all these applications is
the distribution of processing across multiple processors and platforms.

Inventory

Sales

Parts

Factory Parts
Inventory

Accounting Parts
Order

Figure 1. Messaging in an enterprise application.

1

1.1. Alternative approaches

1.1.1. Client/Server Architecture with remote procedure calls

In this architecture, different applications try to communicate by making remote
procedure calls (RPC) in which the messages are sent. Because they are embedded, RPCs
[8] do not stand alone as a discreet middleware layer. When the client program is
compiled, the compiler creates a local stub for the client portion and another stub for the
server portion of the application. These stubs are invoked when the application requires a
remote function and typically support synchronous calls between clients and servers.
Thus this architecture reduces the complexity of developing applications that span
multiple operating systems and network protocols by insulating the application developer
from the details of the various operating system and network interfaces [1]. However,
RPC is appropriate for client/server applications in which the client can issue a request
and wait for the server’s response before continuing its own processing. Because most
RPC implementations do not support peer-to-peer, or asynchronous, client/server
interaction, RPC is not well suited for applications involving distributed objects or
object-oriented programming.

Asynchronous and synchronous mechanisms each have strengths and weaknesses
that should be considered when designing any specific application. In contrast to
asynchronous mechanisms employed by Message-Oriented Middleware, the use of a
synchronous request-reply mechanism in RPC requires that the client and server are
always available and functioning (i.e., the client or server is not blocked). In order to
allow a client/server application to recover from a blocked condition, an implementation
of a RPC is required to provide mechanisms such as error messages, request timers,
retransmissions, or redirection to an alternate server. The complexity of the application
using a RPC is dependent on the sophistication of the specific RPC implementation (i.e.,
the more sophisticated the recovery mechanisms supported by RPC, the less complex the
application utilizing the RPC is required to be). RPCs that implement asynchronous
mechanisms are very few and are difficult (complex) to implement.

1.1.2. Client/Server Architecture with Object Request Broker

An object request broker (ORB) is a middleware technology that manages
communication and data exchange between objects. ORBs promote interoperability of
distributed object systems because they enable users to build systems by piecing together
objects – from different vendors – that communicate with each other via the ORB. The
implementation details of the ORB are generally not important to developers building
distributed systems. The developers are only concerned with the object interface details.
This form of information hiding enhances system maintainability since the object
communication details are hidden from the developers and isolated in the ORB. The two
major ORB technologies are Object Management Group’s (OMG) Common Object
Request Broker Architecture specification and Microsoft’s Common Object Model. Even
though CORBA [2] has certain advantages, it does not support the transfer of objects.
There is also no garbage collection [5]. Moreover ORBs developed by different vendors
may have significantly different features and capabilities. Thus, users must learn a

 2

particular vendor specification, and their value-added features that are often necessary to
make a CORBA product usable. Similarly COM/DCOM [7] has certain negative aspects
that make it unsuitable in implementing such systems. It is platform specific and there is
no stability of APIs making maintainability of software difficult in the long run.

1.1.3. Client/Server Architecture with Message Oriented Middleware

Message-oriented middleware (MOM) is a client/server
http://www.sei.cmu.edu/str/descriptions/clientserver.htmlinfrastructure that increases the
interoperability, portability, and flexibility of an application by allowing the application
to be distributed over multiple heterogeneous platforms. It reduces the complexity of
developing applications that span multiple operating systems and network protocols by
insulating the application developer from the details of the various operating system and
network interfaces [1]. MOMs generally support synchronous calls between clients and
server applications [4]. Message queues provide temporary storage when the destination
program is busy or not connected. MOM reduces the involvement of application
developers with the complexity of the master-slave nature of the client/server mechanism.
MOM increases the flexibility of architecture by enabling applications to exchange
messages with other programs without having to know what platform or processor the
other application resides on within the network. The aforementioned messages can
contain formatted data, requests for action, or both. MOM is typically asynchronous and
peer-to-peer, but most implementations support synchronous message passing as well.
MOM is typically implemented as a proprietary product, which means MOM
implementations are likely to be incompatible with other MOM implementations. Using a
single implementation of a MOM in a system will most likely result in a dependence on
the MOM vendor for maintenance support and future enhancements. This could have a
highly negative impact on a system’s flexibility, maintainability, portability, and
interoperability. It is for these reasons that the Alert Server is built using the queuing
mechanism that MOMs use and Java RMI for the distribution of messages between
different autonomous, heterogeneous processes.

This paper discusses the design and implementation of one such messaging
system called the Alert Server. Alert Server is a general-purpose alert and
acknowledgement message queue and distribution mechanism. It maintains transaction
logs for a comprehensive audit trail of alerts, acknowledgements and receipts. In general,
an alert is generated and submitted to the Alerts Server based upon some mission
application criteria or condition. At the alerts server, the alerts are logged and queued and
if necessary persisted. The Alerts Server determines if there are any subscribers for this
alert and if so, forwards it to the destination. An alert producer could be a human operator
who “fills in the blanks” of an alert message through a GUI or other means. Alert
producers can also be software components that execute “under the hood”, invisible to
human operators. An alert producer assembles the alert in reaction to some system
condition and then sends for distribution. Alert consumers are those applications that are
interested in receiving (a subset of) alerts. This is always accomplished via “registering”
or “subscribing” for alerts that contain a particular pattern in the alert destination or topic
data element by specifying a filter (in the form of a regular expression) during alert
registration. Any client application can be either an alert producer or a consumer or both

 3

http://www.sei.cmu.edu/str/descriptions/clientserver.html

as long as they use the alert server APIs to communicate with the alert server. This Server
has been designed to handle C/C++ as well as Java clients.

1.2. Existing Messaging Systems

Messaging systems are peer-to-peer facilities. In general, each client can send
messages to, and receive messages from any client. Each client connects to a messaging
agent, which provides facilities for creating, sending and receiving messages. Each
system provides a way of addressing messages. Each provides a way to create a message
and fill it with data. Some systems are capable of broadcasting a message to many
destinations. Others only support sending a message to a single destination. Some
systems provide facilities for asynchronous receipt of messages (messages are delivered
to a client as they arrive). Others support only synchronous receipt (a client must request
each message). Each messaging system typically provides a range of services that can be
selected on a per message basis. One important attribute is the lengths to which the
system will go to insure delivery. This varies from simple best effort to guaranteed to
only once delivery. Other important attributes are message time-to-live, priority and
whether a response is required. There are many messaging systems that are being used.
IBM’s MQSeries, Sun’s Java Message Queue and Sentinel’s GED are only some of the
few. GED is a distributed event based system that supports event detection across address
spaces, provide interface for event registration and notification, and support composite
event detection. Current version of GED [9] does not guarantee the delivery of events and
does not implement the publish/subscribe paradigm. It does not support delivery of
events on the content based filtering.

1.3. Motivation

This paper discusses the design and implementation of a messaging system called
the Alert Server. There are several motivations behind our objective of designing and
implementing a message distribution mechanism even though we have many existing
messaging systems. First, not all MOM implementations support all operating systems
and protocols. Second, internal infrastructure of these MOMs cannot be modified to
achieve our goals. Third, there is high overhead if we build the Alert Server on top of
existing MOMs. Finally, some of the special requirements, such as time-to-live,
persistence, and choice of receipt/acknowledgment cannot be easily handled by available
systems.

2. ALERT SERVER OBJECTIVES

If our Alert Server provided a union of all the existing features of messaging
systems it would be much too complicated for its intended users. It is crucial that the
Alert Server includes appropriate functionality needed to implement sophisticated
enterprise applications.

Our design and implementation of the alert server attempts to minimize the set of
concepts a programmer must learn to use enterprise-messaging products. It strives to
maximize portability. We start with the concept of alert producers, consumers and
distributors that act as servers.

 4

C1

 ALERT C3 C4

C2

Figure 2. Alert Server with alert producer and consumers. C1, C2, ... are clients that can
be both producer and consumers of alerts.

2.1. Alert Clients

A client can be either a producer or a consumer or both. The alert producer does
not necessarily need to know who the receiver(s) of the message will be. The producer
“publishes/sends” the messages to the Alert Server which is responsible for the
distribution of messages. Alert Consumers are responsible for processing and responding
to the alert (message) by subscribing/registering through the alert server. An important
goal in this case is to minimize the work needed to implement a producer or a consumer.

2.2. Alert Server

Alert Server manages the alert and acknowledges message queues, distribution of
alerts, and crash recovery. Important goals of an alert server are:

1. Implement a publish/subscribe model. This model has been chosen over the point-
to- point model because point-to-point (PTP) models are built around the concept
of message queues. Each message is addressed to a specific queue; clients extract
messages from the queue(s) established to hold their messages. Clients have to
pull the message from the server rather than the server pushing it to the client
after processing the messages. Publish and subscribe (Pub/Sub) clients send
messages to the alert server. Publishers and subscribers are generally anonymous
and may dynamically publish or subscribe to the alert server. The alert server
pushes the messages arriving from a node’s multiple publishers to its (multiple)
subscribers.

2. Insurance of delivery of alerts before it expires (time-to-live) based on priority.
3. Dynamic delivery of alerts between multiple producers and consumers based on

their registration/subscription topics.
4. Persistence of alerts and acknowledgements to handle to crash recovery of clients.
5. Maintain the privacy and integrity of the messages.

 5

3. DESIGN OF ALERT SERVER

This section discusses the design of the Alert Server. First, we describe the
functionality to be supported by the Alert Server and then describe how the Alert Server
has been designed to achieve this functionality. It also discusses the design of a proxy
server, which acts as a proxy to the Alert Server, to enable the C/C++ clients in
communicating with the Alert Server. This section also discusses the assumptions made
in designing the proxy server.

The Alert Server should provide API to send messages from one application to
another. The client applications should also be able to register and unregister topics of
interest. They should be able to cancel messages and should also be able to send
acknowledgements and/or receipts. Besides, the Alert Server should have the delivery
logic in order to send, and if necessary persist, messages to different destinations on the
basis of their priority. Finally, the alert server should be able to recover from crashes. The
next section describes different types of messages handled by the alert server.

3.1. Alert

 An alert message contains an alert header as well as an optional alert body. All
messages support the same set of header fields. Header fields contain values used by both
clients and the Alert Server to identify and route messages. Body, on the other hand, can
be any Java Object for Java-based clients and an arbitrary string for C/C++ clients. A
header of the alert message has the following data elements.

1. Destination: The destination field in the data element is the “topic” and
synonymous to, for example, a message “topic” or an email “subject”. It is the
value in this field the alert consumers register or unregister by specifying a pattern
in the registration request. The value of this field must begin with one of 3
prefixes (with colon included and all the letters capitalized) TAG:, PROFILE:,
USER:

2. Alert Type: This field in the header identifies the message type. There are
basically two types of alerts, alert itself and an acknowledgement for the alert. An
alert is specified by setting the alert type data element value to Alert, where as an
acknowledgement is specified by setting the alert type to Acknowledgement.

3. Duration: Duration data element in the header helps in identifying the messages
that have expired. Alerts or acknowledgements will remain active and available
for distribution from the Alert Server according to its time-to-live indicator. Once
the alert server receives and forwards the message to any registered recipients, it
will remain in the Server’s queue for the specific duration. The Server deletes the
expired messages. Indefinite storage of messages in the queues is handled by
setting this data field to zero. These alerts should be explicitly cancelled by the
original producer or by any client.

4. Priority: This field in the header helps in priority based delivery of messages. The
priority levels are 0-9, where 0 is designated as the lowest and 9 as the highest
priority. Messages having the same priority are delivered in the order they arrive
(first come first serve basis).

 6

5. Classification: This part of header information allows application specific
classification. Unclassified, Confidential, Secret and Top Secret are the four
classification levels.

6. Persistence: The producer designates messages as persistent, by setting this field
in the header. The Alerts Server stores persistent messages so that they are
reloaded in case of restart and recovered in the case of crash. The storing of the
messages and their retrieval is discussed later.

7. Acknowledge Policy: This field ensures the delivery of messages to the
destination. An alert can have one of the three acknowledgement policies attached
to it: None, Client Acknowledgement, and Receipt. A client acknowledgement
requires the receiving client to generate an acknowledgement alert where as a
client receipt is automatically constructed and submitted to the server after the
client is notified of an incoming alert. Client receipts are not stored as clients
make blocking calls when they send alerts that require receipts. Also Alert Server
discards acknowledgement for alerts that do not require acknowledgement.

8. Cancel Policy: This field helps in the cancellation of alerts that have lived
indefinitely on the server. An alert can be cancelled i.e., deleted from the queue
on the server, by any client if the Cancel Policy field is set to ANY, or only by the
producer of the alert if it is set to the ORIGINATOR.

9. Alert ID: Alert ID is a unique integer that is generated by the alert server to
identify a particular alert or acknowledgment.

10. Correlation ID: This data element is only used when the message is an
acknowledgment. This field takes on the value of the Alert ID for which it is an
acknowledgement.

11. Body: The alert body is any JAVA object that can be sent with the message while
it is a character string in the case of C/C++ alert producers. This difference is due
to the limitation of C and C++. The body in the case of acknowledgement is a
string “ACK”.

3.2. Acknowledgement

An alert acknowledgement as explained above is actually an alert. It contains an
alert header with the same destination or topic as its associated alert, origination time,
persistence, time-to-live (duration) etc. The alert body for the Java based API is replaced
by the string “ACK”. The correlation ID data element contains the alert ID value of the
alert to which this acknowledgment message is responding. Alert consumer applications
may register just for alert acknowledgements, without having to register for the alert.
This capability is provided so that application developers can create a chain of events, for
example: A to produce an alert, B to register for this alert, C to register for
acknowledgements for this alert. A sends alert, B receives alert and acknowledges it, C
receives acknowledgement.

3.3. Receipt

An alert producer can request a “delivery” receipt for an alert by setting alert’s
acknowledgement policy data field to Client Receipt. The receipt is automatically

 7

constructed by the Alert Server the instant the alert consumer receives the alert and then
forwarded by the Alert Server to the requesting producer. Unlike acknowledgements,
receipts are not queued or stored at the Server, nor can alert consumers register for
receipts. This feature is simply to ensure the delivery of the alert.

3.4. Subscription/Registration

As explained above every alert contains a destination header field, the value of
which starts with one of the prefixes: For example: TAG: Alert, PROFILE: watch officer,
USER: Smith. The TAG: prefix helps alert consumers to subscribe to receive specific
alerts by specifying a filtering mechanism that employs regular expression masks. For
example: .* specifies all alerts. ABC specifies all alerts where destination contains the
string ABC. ^A specifies all alerts where destination begins with A. X$ specifies all
alerts where destination ends with X. PROFILE: prefix helps alert consumers to
subscribe to any message that belong to a specific profile. The USER: prefix as the name
indicates helps in subscribing to a messages to a particular user.
When the Alert Server processes an incoming alert, it places the filtering mask that the
consumers subscribed upon the pattern contained in the alert’s destination. For example,
if there is a consumer subscribed to a filter of “TAG:Alert” and an alert with the
destination “TAG:AlertXYZ” comes in, then the subscription “TAG:Alert” is matches
against the topic or destination “TAG:AlertXYZ” because the regular expression mask
of “TAG: alert” placed against the topic “TAG: alertXYZ” matches true (“TAG: alert is a
sub string of “TAG:AlertXYZ”). In the case of the other prefixes, the matching is
performed by string comparing the subscription filter with the destination in the alert
header. Consumer clients have the option to subscribe to multiple topics using
separators. Multiple topics with the same prefix are submitted by separating with
commas, for example, TAG:a, b, c will produce three subscriptions; TAG:a, TAG:b, and
TAG:c. Similarly, multiple topics with multiple prefixes are submitted using a semicolon
to separate prefixes, for example, TAG:a, b;USER:a, b will produce four subscriptions,
TAG:a, TAG:b, USER:a, USER:b. The next section discusses the alert server
architecture. It tries to explain the reasons for different decisions taken for designing the
architecture.

4. ALERT SERVER ARCHITECTURE

4.1. Messaging Domains:

Most messaging products support either point-to-point or the publish/subscribe
approach to messaging.

4.1.1. Point-to-Point Messaging Domain

A point-to-point (PTP) product or application is built around the concept of
message queues, senders, and receivers. Each message is addressed to a specific queue,
and receiving clients extract messages from the queue(s) established to hold their
messages. Queues retain all messages sent to them until the messages are consumed or
until the messages expire.

 8

PTP messaging has the following characteristics:
• Each message has only one consumer.
• There are no timing dependencies between a sender and a receiver of a

message. The receiver can fetch the message whether or not it was running
when the client sent the message.

• The receiver acknowledges the successful processing of a message.

This messaging model is useful when the message needs to be processed
successfully by one consumer. But, as already mentioned, one of the objective of Alert
Server is the delivery of messages to multiple clients. Therefore the architecture of Alert
Server implements a publish-subscribe model that is explained below.

4.1.2. Publish/Subscribe Messaging Domain

In a publish/subscribe (pub/sub) product or application, clients address messages
to a topic. Publishers and subscribers are generally anonymous and may dynamically
publish or subscribe to the content hierarchy. The system takes care of distributing the
messages arriving from a topic’s multiple publishers to its multiple subscribers.

Pub/sub messaging has the following characteristics:
• Each message may have multiple consumers.
• There is a timing dependency between publishers and subscribers, because a

client that subscribes to a topic can consume only messages published after
the client has created a subscription, and the subscriber must continue to be
active in order for it to consume messages.

The Alert Server uses this messaging model as it has to delivery messages to zero,

one or many consumers that are anonymous. This timing dependency is relaxed by
allowing the producers to create persistent alerts. Persistent alerts can be received even
when the subscribers are not active. Thus, persistent alerts provide the durability and
reliability provided by the queues and still allows clients to send alerts to many
consumers.

4.2. Message Consumption:

Messages can be consumed in either of the two ways.
• Synchronously: A subscriber or a receiver explicitly fetches the message from

the destination by calling a method. The method can block until a message
arrives, or it can time out if a message does not arrive within a specified time
limit.

• Asynchronously: A subscriber need not wait for the delivery of the message.
Whenever the message arrives, the server forwards it to the consumers that
have registered for that message. The consumers do not have to wait for the
delivery of the message.

 9

4.3. Message Delivery Mode

The producers send alerts to the Alert Server in two modes. As already explained
the producers can set the delivery mode of the message in the persistent header field.

• The NON-PERSISTENT mode is the lowest-overhead delivery mode because
it does not require that the message be logged to stable storage. Alert Server
failure can cause a NON-PERSISTENT message to be lost.

• The PERSISTENT mode instructs the Alert Server to take extra care to insure
the message is not lost in transit due to its failure. It logs the alerts and helps
in retrieving them during normal start ups as well as in the case of recovery
after crashing. The data structures used in the fast retrieval of alerts is
explained in the next section.

4.3.1. Logging and Retrieval of Alerts

The persistent mode delivery of the alerts causes them to be stored to a stable
storage (disk). The alerts are stored in files depending on their priority. There is a file for
each level of priority. Each file contains the following:

1. Index Table: The index table is a data structure stored in the log file for fast
retrieval of alerts. Each log file has its own index table to store and retrieve
the alerts belonging to its priority. The index table reduces the search time and
thus helps in the fast retrieval of alerts. The index table and the alerts are
stored in a serialized manner. The table has records that hold the information
of the location of the alert in the log. Each record has a log sequence number
(LSN), pointer to the position of storage of the alert in the file (fp), size of the
alert (size) and a cancel bit. The log sequence number helps in indexing into
the table and obtain the record that has information regarding the storage of
alert. The record has file pointer that points to the alert in the file and the size
of the file.

2. BLSN: BLSN in each file is an integer stored in each log along with the index
table. BLSN is set to the ID of the alert that has recently been added to the
priority queue. There is a BLSN for each priority queue in its corresponding
log.

3. DLSN: DLSN, like BLSN, is also an integer stored in each log for
corresponding priority queue. DLSN, unlike BLSN, is set to the ID of the alert
that has been recently sent from the priority queue.

4. CANCEL BIT: The cancel bit indicates whether the alert has been cancelled
or not.

 Both DLSN and BLSN help in the retrieval of NON-PERSISTENT alerts in case
of crash of the Alert Server. Instead of reading all the non-persistent alerts from the log
when the server recovers, only those alerts whose IDs fall between BLSN and DLSN are
read from the log and put into the priority queue, thus reducing the number of alerts read
from the logs. The serialized log files always contain capacity of the index table at
beginning followed by BLSN after 4L bytes. DLSN is at 8L bytes followed by index

 10

table with its records at 12L bytes, followed by storage of actual alerts from 20L bytes in
each file. An example log file for one of the priority levels is shown in
Figure 3.

The alerts, after storing in the log, are sent to the queue for distribution to the
consumers who have subscribed to their topics. Since acknowledgements are alerts with
just the correlation ID set to that of their alert, they are handled as if they are alerts.

1. Capacity of the log (0L)
2. BLSN (4L)
3. DLSN (8L)
4. Index Table (12L)

LSN fp Size

1 20L 24L

3 45L 27L

Alert with ID 1
Alert with ID 3

Figure 3. Contents of a log file. LSN is the log sequence number, fp is the file position
and size is the size of the object.

4.4. Subscription and Unsubscription for alerts and acknowledgement

Consumers that have subscribed for specific alerts or acknowledgements are

stored in hash tables. There are three primary hash tables one for each prefix TAG, USER
and PROFILE. These hash tables have entries with alert type as key and another
secondary hash table as value. The secondary hash table has keys for each topic, pointing
to the consumer list as their values. This list contains consumer nodes that hold
information regarding different consumers registered with the Alert Server. Each node in
the list has unique ID. Apart from this, the list also contains information regarding the
number of consumers added and number of consumers deleted. For each consumer added
to the list, the attribute of the list increases by one while each deletion decrements the
other attribute by one. These attributes help in reducing the sweep time of the priority
queue. This is explained later in detail. Every consumer list in the secondary hash table
has a unique ID. All consumers registered for alerts are stored in one hash table while all
consumers are registered for ACKs are stored in another secondary hash table.
Consumers for a specific topic are stored in the same consumer list in the secondary hash
table. All consumers for an alert are obtained by using the alert topic as the key in the
secondary hash table. Every new consumer registration causes that consumer object to be
added to the beginning of its respective list. The primary hash table at the top level is for
indexing purpose. This reduces the search time in finding the consumers registered for a
specific alert type (ALERT or an ACK). The second level hash table is used for

 11

Secondary
Hash table Consumer List

Primary
Hash table A C3 C2 C1

B
CALT

ACK

C2 C1

C6 C1

C1C5 C4

C1C2
B
X

determining the consumers for a specific topic. An hash table has been chosen for the
first level over other possibilities of array of lists as it would be easier to add more keys,
such as CLIENT RECEIPT if needed in the future. The unsubscription for alerts and
acknowledgements by a consumer results in the deletion of that consumer from the
consumer list preventing the Alert Server from distributing any messages further.

The data structure with the hash table and consumer lists is shown in Figure 4.
The primary hash table contains topics as keys while the secondary hash table
distinguishes the consumers registered for alerts and acknowledgements.

Figure 4. Hash tables that store the consumers that are registered with alert server for a
topic. All consumers registered for an alert are stored in ALT and those registered for an
acknowledgement are stored in ACK table. A, B, C are the topics and C1, C2, C3… are
the consumers.

4.5. Queuing and Distribution of Alerts

The alerts are stored in the logs if needed depending on their delivery mode and
later put in the priority queue. There are ten queues one for each priority level. The data
structure used for the queues is an array of queues. The alert priority level is used for
indexing into the array and getting the queue at that index. Every new alert is always
added at the beginning of the queue. Therefore insertion of the alert always takes a
constant time. Queuing and distribution of alerts are two independent operations.
Therefore they are handled simultaneously using two different threads. The data
structures used in queuing and the algorithm for sweeping are explained below.

4.5.1. Queuing

Producers publish alerts independent of the distribution of alerts on the Alert
Server. Therefore they are queued for delivery by the Alert Server. The queuing of alerts
is simple. Whenever a new alert comes in, it is indexed into the queues array using its
priority and then put in the beginning of its queue. After putting the alert into the queue,
the BLSN of the log file depending on the alert priority level is updated with the id of the
alert. Thus the alerts put into the queue are now available for distribution. The queue is

 12

index

A# - Alerts with their IDs

A4 A3 A1

A8 A2

A9

A10 A6 A5A7

9

8

7

6

5

4

2

3

 Priority Queue

1

swept in order to distribute the alerts. Similarly, when an alert is cancelled, the alert is
removed from the queue. The canceling of the alert depends on its cancellation policy.
The expired alerts are removed when the queue is swept. The queue array with queues for
each priority level is shown below in Figure 5. The priority of alert is used as an index
into this array of queues that will reduce the time in searching and adding an alert at its
proper position.

Figure 5. Priority queue data structure. Each alert is stored in its respective priority level
queue. A1, A2… are alerts with their Ids that are stored in this data structure.

4.5.2. Distribution

Alerts are distributed to their respective consumers by comparing their topic with
the topic in the consumer object that is created and stored in the consumer list data
structure when the consumer registers. The priority queues are swept and the alerts are
distributed. It is during this sweeping of the priority queue that the expired alerts are
purged. Since the goal of distribution is the delivery of alerts on the basis of priority, the
higher priority level alerts are delivered before the lower ones. Higher priority numbers
indicate higher priority. Alerts of the same priority are delivered on LCFS (last come first
served) basis since the new alerts are added at the beginning of the queue. The way in
which the queues are swept is discussed next.

4.5.3. Sweeping Algorithm

The algorithm makes use of the information held in the alert and consumer
objects. The alert object, apart from the header and body field, contains a hash table that
holds mapping between each consumer list and max ID of the consumer in the list that it
has been sent. This hash table contains the consumer list id as the key and the highest
consumer ID that received the alert as its value. This information is necessary in trying to

 13

stop sending the message to consumers that have already received it. This also reduces
the time for sweeping the priority queues. As already explained, each consumer object in
the consumer list has unique ID in that list and similarly every consumer list also has its
ID. Consumer list ID serves as an index to the hash table of the alert message which
indicates that the alert has been sent up to this consumer in the list and needs to be sent
to all the consumers before this consumer in the list. Since new consumers are always
added at the beginning of the list, the consumers are always in decreasing order of their
ID. This information is used to prevent from resending the same message to the same
consumer more than once. The sweeping algorithm guarantees the delivery of alerts in
the order of their priority. The algorithm takes a queue of the highest priority from the
priority queue data structure and then traverses the queue to send the alerts to the
registered consumers. There are two possibilities of changes to the priority queue and
consumer table data structures: either an alert has been added or deleted from the one of
the queues resulting in change of state of the priority queue data structure or some
consumers might have been added or deleted from the consumer list resulting in a change
in consumer table.

The algorithm executes in three phases. In the first phase the alert is checked for
expiration. Expired alerts are removed from the queue. This is checked by comparing
current system time with the sum of the time at which alert was received on the server
and the time-to-live data field in the alert header. If the sum is greater than the system
time then it is removed from the queue. Phase two consists of finding the consumer list.
Comparing the alert destination with the keys in the consumer hash tables does this. This
phase also filters out consumers that have been registered for alerts that may be published
in future. The consumer lists thus obtained are used further in phase three. In the absence
of a consumer list, the sweeping algorithm continues with the next alert in the queue and
applies the same three phases. During the third phase, the hash table in the alert is used to
reduce the traversal of the consumer list. This also prevents resending of alerts to the
same consumers. The unsubscription of consumers is not of much concern as they are
simply deleted from the consumer list and there is no need to worry about the delivery of
the alerts to them. During the third phase, the max ID of the consumer the alert had been
sent to is obtained from the hash table in the alert by using the consumer list id which
serves as a key. If this is zero, it means we have a new alert in the queue and the alert is
sent to all the consumers in the list. If the ID of the consumer retrieved is more than zero,
then the alert has been sent to some consumers and needs to be sent to the newly added
ones.

Algorithm: Sweeping algorithm is shown in Figure 6. Initially, queue Q with the
highest priority is sent to the algorithm. Let A0, A1, A2… be the alerts in the queue. Their
subscripts indicate their positions. Alerts are added at the beginning of the queue. Acurrent
be the current alert that is being distributed in the queue and Anext be the alert after the
current alert. ST and PT are the secondary and primary hash tables that store the
information about the consumers registered. The descriptions of these data structures
have been described in earlier sections. HT is another hash table in each alert. This stores
the consumer ID that has recently received the alert in that consumer list. All the lists that
have the same topic that match the alert topic have an entry in this table. X[Y] indicates
an attribute X of an object Y. For example, topic [Acurrent] indicates the topic field of the
alert.

 14

1. Ac

2. wh

3. i

4.

5. el

6.

7. A

8. end

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

Figure 6. Sweeping a

SweepingAlgorithm (Q) {

urrent = A0

ile (Acurrent != null) begin

f (expired (Acurrent) = false)

 findconsumerlist(Acurrent)

se

 Q = Q - Acurrent

current = Anext

 of while
lgorithm that sweeps through the priority queue.
findconsumerlist (Acurrent)

ST = PT (alerttype [Acurrent])

if (prefix = TAG)

 for each key in ST begin

 if (matches (key, topic [Acurrent]))

 list = ST [topic [Acurrent]]

 sendtoOutputQueue (list, Acurrent)

 end

else

 list = ST[topic [Acurrent]]

 sendtoOutputQueue (list, Acurrent)

sendtoOutputQueue (list, Acurrent)
if (list != null)

consrecv = get (HT[ID[list]] [Acurrent])

 if (consrecv = 0)

 send to all the consumers between added [list] and deleted[list]

 put (HT [Acurrent], added [list])

 else

 if (added [list] > consrecv) {

 send to all consumers between added [list] and consrecv

 put (HT [Acurrent], added [list])
 15

5. MULTITHREADING THE SERVER

The Alert Server uses Java Remote Method Invocation [RMI][3] in its
communication interface. RMI calls are blocking therefore these calls need to be handled
asynchronously. Client requests are queued. Since each request is independent and there
is no guarantee that they will arrive within a certain time there is a queue for each type of
request and a different thread handles each different request. Multithreading also helps in
making the server scalable.

The clients put the messages in the queue and continue with their processing.
Since each queue has a thread listening on it, the thread is awakened when the queue is
not empty. The data structures handled by each thread are shown in Figure 7. There are
other threads for handling other requests like canceling an alert, unsubscribing for a topic.
The threads shown in Figure 7 are the threads that handle registration for a topic,
publishing an alert and the delivery of alerts to different consumers. The publish handler
listens on the notify buffer that holds the alerts that are published by different clients. It
places these alerts in the priority queue data structure on the basis of their priorities. On
the other hand, the registration thread handles the registration in the registration buffer
independent of publishes. This thread constructs consumer nodes that hold consumer
information that is used while sending the alert to the respective consumers by the output
handler thread and places them in their respective consumer lists in the secondary
consumer hash table. The Message handler thread runs the sweeping algorithm on the
priority queues and places the alert and its consumers in the output queue. The output
handler thread picks up these alerts and delivers them to the consumers. This thread
makes RMI calls to the clients to deliver the messages.

5.1. Synchronization Issues

The Alert Server is made up of several data structures that will be shared and
hence may be concurrently accessed by threads. Following is the list of shared data
structures:

1. Consumer list: list of consumers with their IP addresses and their USER ID.
2. Priority Queues: array of ten queues that store the alerts on the basis of their

priority.
3. Output Queue: queue of the alerts and the consumers registered.
4. Alert log file: There is one log file for each priority. It stores the alerts and

retrieval information.
5. Secondary Hash table: hash table that helps to distinguish between different

topics for the same alert types. There is a hash table for each alert type
ALERT and ACK.

Race Conditions: When the result of two or more threads performing an operation

depends on unpredictable timing factors, there is a race condition. Hence the access of the
consumer list and several such shared data structures must be guarded for mutual
exclusion. This can be attained using synchronization mechanisms or locks. There are
several types of locks and the right choice must be made.

 16

Priority

Notify
B ff

PublishHandlerTh.

RMI

OutputHandlerTh.

MessageHandlerTh.

RegistrationHandlerThread

RMI

Register Buffer

Primary
Hash table

Secondary
Hash table Consumer

ListSmith
Brian
JohnALER

ACK

C3 C2 C1

C2 C1

C6 C1

C1C5 C4

C1C2

Robert
Brian

Producers

A4 A3 A1

A8 A2

A9

A10 A6 A5A7

9

8

7

6

5

4

2

3

1

Output Buffer

Consumer

Consumer
Consumer

Consumers

Figure 7. Alert Server Architecture Overview.

 17

5.2. Types of Locks
5.2.1. Mutex

Mutex lock is a synchronization primitive that allows multiple threads to
synchronize access to shared data by providing mutual exclusion. The mutex lock has
only 2 states: locked and unlocked. Once a thread has acquired the mutex lock on a data
structure, other threads attempting to lock the structure will be blocked until it is
unlocked. Since mutex allows only one thread to access any data at a given time, it is the
most restrictive type of access control. For example, when a mutex is used to synchronize
access to a list, the mutex will control the entire list. While the list is being accessed by
one thread it is unavailable to all other threads. If most accesses are reads and writes of
the existing nodes as opposed to insertions and removes, then a more efficient approach
will be to allow nodes to be individually locked.

5.2.2. Read-write

Read-write lock is another synchronization primitive that was designed
specifically for situations where shared data is read often by multiple threads/ tasks and
rarely written. A read-write lock is similar to a mutex lock except that it allows multiple
threads to concurrently acquire the read lock whereas only one writer at a time may
acquire a write lock. In the current scenario the Insert or delete operation on a list will
require acquiring the read-write lock in the write_lock mode, while the seek (search) of a
node will require acquiring the lock in the read_lock mode. By using the read-write locks
we can have parallel search operations in the Alert Server. The only drawback of using
read-write locks is that locking operations take more time than the locking operations on
mutexes. Hence locking strategy must be chosen carefully. Read-write locks are justified
for the consumer list and priority queue data structures in the alerts where inserting and
deleting is done only once; thereafter all other operations are search operations on the list
to find a particular node. Read_lock mode can be used to allow threads to search the list
in parallel.

5.2.3. Semaphore

Semaphore is a synchronization primitive that has a value associated with it,
which is the number of shared resources regulated by the semaphore. Whenever a thread
acquires a semaphore, the semaphore count is decreased by 1. Whenever a thread releases
a semaphore, its count is increased by 1. Any thread wanting to acquire the semaphore
must wait till its count is greater than 0. Traditionally, semaphore operations have been
known as P and V operations. P operation is equivalent to acquiring the semaphore
(sema_wait). V operation (sema_post) is the same as releasing the semaphore.
Semaphores are used primarily when there is more than one shared resource that needs to
be regulated.

For synchronization of data structures in the Alert Server, mutex locks or
semaphores can be used when the operations involved are primarily inserts and deletes

 18

that require exclusive access. For data structures such as the consumer list, where a
majority of the operations are search operations on the list and updates on individual
nodes, read-write locks can be used for locking the list and semaphore or mutex locks can
be used for locking individual nodes.

Table 1. Locks used for DIFFERENT DATASTRUCTURES

Data Structures and Characteristics Locks used with Rationale
Consumer list: list of consumer nodes that
are added when a client registers and are
deleted when the consumer unregisters
with the Alert Server. Whenever the Alert
Server has to send an alert to the clients, it
scans the list.

Mutex locks are used since operations
used are primarily inserts and deletes
which happen when a client registers or
joins. These operations need an exclusive
lock mode that are provided by mutex
locks. Using mutex locks is preferred to
read-write locks, also because operations
on read-write locks have a high
overhead.

Alert log file: file that stores the alerts that
are published

Mutex locks are used here as file read
and write should be mutually exclusive.

Output Queue: queue of alerts and
consumers that are added when an alert is
to be sent to its consumers.

Mutex locks are used in this case since
the only two operations in this case are
reading and writing. Nodes are added in
the end while the deletion is done from
the front.

Secondary Hash table: table of topics with
their consumer lists. The table object is
added only when there is a new topic.

 Read-write lock for locking consumer
lists. Write lock provides exclusive
access to graph while inserting or
deleting nodes in the lists. When
accessing list in shared (read) mode, lock
hash table is used for managing access to
individual lists.

 19

6. CONCLUSIONS AND FUTURE WORK

This thesis presents a messaging system that allows separate client applications to
be combined into a flexible and reliable system. It discusses the design and
implementation of Alert Server that handles JAVA clients and is also responsible for
distributing alerts. It explains the design and implementation of Proxy Server that handles
C/C++ clients. It discusses the problems in a messaging environment and the design
choices made to solve these problems. It also discusses the various alternatives available
and reason behind the choice of a particular alternative.

Alert Server has been implemented using publish/subscribe model where clients
can subscribe to three topics TAG, USER and PROFILE. It supports regular expression
based subscription in the form of TAG. It also assures delivery of alerts on the basis of
priority and maintains transaction logs for a comprehensive audit trail of delivery of
alerts, acknowledgements, and receipts to appropriate destinations. It supports persistence
of alerts by logging them on to a file-based storage. The clients have the option of
sending non-persistent alerts also. A new logging and retrieval mechanism has been
implemented. This is more efficient than the traditional way of storing the alerts. This is
achieved by storing alerts on the basis of their priorities and storing additional
information in the logs. A sweeping algorithm has been designed to sweep the data
structures and find the consumers for the alert. A proxy server has also been designed and
implemented to handle C/C++ clients. This proxy server is transparent to the clients and
its architecture supports a store and forward mechanism. The C/C++ clients are handled
in the same way as JAVA clients.

The current implementation of Alert Server is a stand-alone application. This can
be integrated with GED/LED so that the clients have an option of either generating events
or send/receive alerts. This can be achieved by changing the API of the LED and API of
the Alert Server so that the client use that API to decide whether to send an alert or
generate an event. The current implementation of Alert Server handles the TAG, USER
and PROFILE on one server. This can be changed such that the subscriptions pertaining
to USER and PROFILE can be handled by one Alert Server and those pertaining to TAG
by another Alert Server. This may be done as Alert Server handles TAG subscriptions
slightly differently than the other two. More over this also improves the scalability of
Alert Server. The current implementation of Alert Server supports publish/subscribe
model. It can be extended to support point-to-point model also. The clients in the current
implementation need the IP address of the server in order to communicate. This can be
changed to improve availability by using JINI. The programs can then interact
spontaneously enabling services to join or leave the network with ease. This allows
clients to view and access available services with confidence. The current implementation
can also be extended to provide administration utility and also provide encryption
mechanism when the alert is sent over a network to provide security.

 20

7. REFERENCES

[1] Rao, B. R. “Making the Most of Middleware.” Data Communications International
24, 12 (September 1995): 89-96.

[2] The Common Object Request Broker: Architecture and Specification, Version 2.0.

Framingham, MA: Object Management Group, 1996. Also available [online] <URL:
http://www.omg.org/> (1996).

[3] The Remote Method Invocation Specification.

[4] Vondrak, C., Message-Oriented Middleware. 1997.

[5] Object Management, G., {CORBAServices: Common Object Services Specification

v1.0}. 1995: John Wiley \& Sons Inc. NJ.

[6] Schmidt, D.C. and S. Vinoski, The OMG Events Service. C++ Report. 1997.

[7] http://msdn.microsoft.com/library/en-

us/cossdk/htm/pgservices_events_20rp.asp?frame=true, COM+ Events Architecture.
2001.

[8] Scarlett, S., Monitoring the Behaviour of Distributed Systems, in Cambrigde

University Computer Laboratory. 1996, University of London: London.

[9] Dasari, R., Events And Rules For JAVA: Design And Implementation Of A Seamless

Approach, in Database Systems R&D Center, CIS Department. 1999, University of
Florida: Gainesville.

 21

http://www.omg.org/

	ABSTRACT

